# Eulerian Graphs and Related Topics: Part 1, Volume 1 by Herbert Fleischner

By Herbert Fleischner

The 2 volumes comprising half 1 of this paintings embody the topic of Eulerian trails and masking walks. they need to charm either to researchers and scholars, as they include adequate fabric for an undergraduate or graduate graph thought direction which emphasizes Eulerian graphs, and therefore could be learn through any mathematician now not but acquainted with graph thought. yet also they are of curiosity to researchers in graph conception simply because they include many fresh effects, a few of that are purely partial suggestions to extra basic difficulties. a few conjectures were incorporated besides. a number of difficulties (such as discovering Eulerian trails, cycle decompositions, postman excursions and walks via labyrinths) also are addressed algorithmically.

Similar discrete mathematics books

Complexity: Knots, Colourings and Countings

In keeping with lectures on the complicated examine Institute of Discrete utilized arithmetic in June 1991, those notes hyperlink algorithmic difficulties coming up in knot concept, statistical physics and classical combinatorics for researchers in discrete arithmetic, computing device technology and statistical physics.

Mathematical programming and game theory for decision making

This edited ebook provides fresh advancements and cutting-edge evaluation in numerous components of mathematical programming and video game concept. it's a peer-reviewed examine monograph less than the ISI Platinum Jubilee sequence on Statistical technological know-how and Interdisciplinary examine. This quantity presents a breathtaking view of idea and the purposes of the tools of mathematical programming to difficulties in statistics, finance, video games and electric networks.

Introduction to HOL: A Theorem-Proving Environment for Higher-Order Logic

HOL is an evidence improvement method meant for functions to either and software program. it truly is largely utilized in methods: for at once proving theorems, and as theorem-proving help for application-specific verification structures. HOL is at the moment being utilized to a large choice of difficulties, together with the specification and verification of serious platforms.

Algebra und Diskrete Mathematik

Band 1 Grundbegriffe der Mathematik, Algebraische Strukturen 1, Lineare Algebra und Analytische Geometrie, Numerische Algebra. Band 2 Lineare Optimierung, Graphen und Algorithmen, Algebraische Strukturen und Allgemeine Algebra mit Anwendungen

Extra info for Eulerian Graphs and Related Topics: Part 1, Volume 1

Sample text

Denn in einem geraden Knotenpunkte hat man bei jedesmaligem Uurchlaufen zwei Zweige ausgeschlossen, so dass bei erneutem Aukommen in demselben wenigstens noch ein Zweig zum Verlassen fibng bleibt. Der Anfangspunkt ist nber durch den Beginu zu einem geraden Knotenpunkte verwmdelt worden, so dass auch in ihm ein Gteckenbieiben nicht miiglich ist. > man dngegen einen Linienzug in einem geraden Knotenpunkte zu umfahren nu, so kann man auch in diesem stecken bleiben, indem er durch dcii Beginn zu einem nngeraden verwmdelt murde.

3ept. 1871) einem Kreise befreundeter Mathemotiker vor. Urn J e vor Vergcascnheit zu bcwahren. m u d e ne bei dem Mange1 jeder echriftlichen Aufzeichnuug aus dem Gedkhtniss wieder bergestellt werden, wm icli unter Bcihilfc meines verebdn Collegeu Lliroth durch dau Folgende mbglichst gctren auwiifiihren such&. 11. Three Pillars of Eulerian Graph Theory Deber eine Aufgabe der Geomotria situs. 21 31 die A n d l der Zweige angiebt, und je nnch dieser Anzalil als gerad oder ungerad genannt seiu soll.

Aum. der Hed. Der wesentlichc Inhalt des Voretekenden, nur in kiirzcrer D:wtellung, eum Tbeil obnc nahere AusTuhrung der Beweisc, findct rich iu der leidcr wenig b e b n t e n Abhandlung von Listing, Vorsfudieic sur Y'opoloyie, welche in den GIttinger Studien (Enter &I. Wittingen , 1847) erechienen ist. Viellcicht kanii der vomtehende Aufsatz dw~u dieneu, die Aufnlerksamkeit der Geoineter auf diese rrucli in vicleii mderu Bedelilingen inhdtreiclie ArLeit wieder hinziilenken. 23 On the Possibility of Traversing a Line Complex Without Repetition or Interruption by Carl Hierholzer.